
Canonical Bidirectional Typing via Polarised System L

Zanzi Mihejevs

Glasgow Lab for AI Verification

1 Abstract

What is the relationship between polarity and bidirectional typing? It has long been observed
that there is a connection between the two[Kri], but the precise relationship has remained
unclear. Moreover, it has been argued [McB] that the link itself is a red herring, and that
bidirectional typing is better explained not by polarity but by chirality - the duality between
producers and consumers.

Polarised System L [Dow17] is a type theory that combines both dualities - the positive
fragment is driven by a cut between a primitive producer and a pattern, and the negative
fragment is driven by a cut between a primitive consumer and a co-pattern.

Remarkably, linear System L admits a canonical bidirectional typing discipline based on a
combination of ideas from both standard and co-contextual typing, giving us a ”bi-contextual”
typing algorithm.

This lets us equip a type system based on classical linear logic - containing all four con-
nectives and derivable implication and co-implication - with a bidirectional discipline where all
typing annotations are exclusively limited to shifts between sythesisable and checkable expres-
sions.

2 Introduction

Bidirectional typing has established itself as an effective approach to developing type-driven
type-checking algorithms[DK21], however equipping a type system with a bidirectional disci-
pline can still be more of an art than a science. This is especially true when it comes to
type systems with non-trivial elimination forms, such as those involving binding. Prior work
[MRK22] on polarised approaches to bidirectional typing has shown that utilising polarity in
algorithmic type-checking can significantly simplify the type inference algorithm. We show how
using System L rather than CBPV allows us to take this even further and give a decidable
type-inference algorithm for a type-system based on full linear logic.

The advantage of System L over CBPV is that while both calculi have a notion of polarity,
CBPV’s split between values and computations is tied to the polarity of each type - value judge-
ments correspond to positive types, and computation judgements correspond to negative types.
On the other hand, in polarised System L both positive and negative types each have a pair
of judgements corresponding to their own notion of producer and consumer terms. Moreover,
each polarity has its own notion of focused judgement, which we call its ’principal chirality’ -
positive types are focused on producer terms, while negative types are focused on consumers.

3 Principal Chirality

The key idea of our approach is that each polarity has a ’principal chirality’ corresponding to
the focused judgement, and the ’auxiliary chirality’ corresponding to the unfocused judgement.

Canonical Bidirectional Typing via Polarised System L Zanzi Mihejevs

Type-checking each polarity proceeds by first synthesizing the type of the judgement corre-
sponding to the principal chirality, then checking the type of the judgement of the auxiliary
chirality against the synthesized type. The crucial difference between the two phases is in the
way that information gets propagated in the principal and auxiliary contexts. The principal
context is built-up bottom-up using the co-contextual [EBK+15] approach (which means that
positive variables and negative co-variables are both checkable), while the auxiliary contexts
are built-up top-down (so negative variables and positive co-variables are synthesised). This
combination of contextual and co-contextual typing is why we call this a ’bi-contextual’ typing
discipline.

4 Typing Algorithm

Remarkably, once we adopt the bi-contextual typing discipline, we discover that System L
requires almost no further modifications to make it fit into this framework. The checkable/syn-
thesisable discipline of each connective is fully determined by its canonical place in polaraised
System L, and the only modification that we need to do is to add annotations on two shifts.

To type-check the positive fragment, we start with a cut between a producer and a pattern.

Γ ⊢ producer ⇐ A|∆ Γ′|pattern ⇒ A ⊢ ∆′

<producer|pattern> : (Γ,Γ′ ⊢ ∆,∆′)
(Cut)

We first synthesise the type of the pattern, then check the type of the producer against the
synthesised type, after which we are done. This covers all rules in the positive fragment.

Dually, to type-check the negative fragment, we start with a cut between a consumer and a
corresponding co-pattern.

Γ, copattern ⇒ A ⊢ ∆ Γ′ ⊢ consumer ⇐ A,∆′

<copattern|consumer> : (Γ,Γ′ ⊢ ∆,∆′)
(Cut)

We first synthesise the type of a co-pattern, then check the type of the producer against the
synthesised type, after which we are done. This covers the entirety of the negative fragment.

Finally, in order to type the full calculus, we need to say what happens to negation and
the shifts. Curiously, negation inverts the polarity of each connective, but it does not change
their principal chirality - so a value becomes a covalue and vice-versa, and patterns swap
with copatterns. This requires no additional annotational burden as it means that checkable
judgements remain checkable, and synthesisable judgements remain synthesisable.

The most interesting thing happens when we consider the shifts. The shifts amount to
swapping *both* the polarities and principal chiralities of a judgement. On one side, a copattern
embeds into a value, and a pattern embeds into a covalue. This corresponds to embedding a
synthesisable judgement into a checkable one, and can be done with no issue. But the other
way around - embedding a (co)value into a (co)pattern requires us to synthesise the type of a
checkable judgement, which is precisely the only two places where we need to place a typing
annotation.

References

[DK21] Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Computing Surveys
(CSUR), 54(5):1–38, 2021.

2

Canonical Bidirectional Typing via Polarised System L Zanzi Mihejevs

[Dow17] Paul Downen. Sequent Calculus: A Logic and a Language for Computation and Duality.
PhD thesis, University of Oregon, 2017.

[EBK+15] Sebastian Erdweg, Oliver Bračevac, Edlira Kuci, Matthias Krebs, and Mira Mezini. A
co-contextual formulation of type rules and its application to incremental type checking.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 880–897, 2015.

[Kri] Neel Krishnaswami. Polarity and bidirectional typechecking. Available at ḧttps://semantic-
domain.blogspot.com/2018/08/polarity-and-bidirectional-typechecking.html”.

[McB] Conor McBride. Basics of bidirectionalism. Available at
ḧttps://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/”.

[MRK22] Henry Mercer, Cameron Ramsay, and Neel Krishnaswami. Implicit polarized f: local type
inference for impredicativity. arXiv preprint arXiv:2203.01835, 2022.

3

	Abstract
	Introduction
	Principal Chirality
	Typing Algorithm

